### **Smart Tech Qualifications and Information**

# For this qualification TLM recommend the excellent teaching resources and support offered by Black Country Atelier.

Further information can be found <u>here</u> [1].



Level 1

# Level 1, Unit 1 - Product design and visualisation (5 credits)

| 1. relate<br>opportunities and<br>constraints to a<br>product design. | 2. visualise product solutions to meet identified needs. | 3. present<br>evaluations of<br>designs.                               |
|-----------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| 1.1 identify opportunities<br>for a product or solution. [5]          | 2.1 identify key aspects in a design brief. [6]          | 3.1 collect evidence for presenting the design. [7]                    |
| <u>1.2 identify constraints on</u><br>a product or solution. [8]      | 2.2 gather information to develop a solution. [9]        | 3.2 present strengths and<br>weaknesses in a visual<br>prototype. [10] |
| <u>1.3 consider commercial</u><br>sustainability of a product         | 2.3 design and test<br>sketches and models to            | 3.3 use appropriate digital and/or physical models to                  |

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert**股级ee(**a,fm] })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview'); -->

| or solution. [11] | visualise a solution. [12]                                                     | support presenting a<br>design. [13]                          |
|-------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|
|                   | 2.4 use appropriate digital<br>and physical media to<br>design a product. [14] | <u>3.4 receive feedback from</u><br>presenting a design. [15] |
|                   | 2.5 prepare a visual<br>prototype of the solution.<br>[16]                     | <u>3.5 act on feedback to</u><br>improve a design. [17]       |

### Level 1, Unit 2 - Product manufacture (5 credits)

| 1. relate a product's<br>design to its<br>manufacture.                                                           | 2. use tools and<br>information to<br>support the<br>manufacturing<br>process.                | 3. present an<br>evaluation of<br>manufacturing<br>processes.                                                                           |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <u>1.1 check quality in a</u><br>design in preparation for<br>manufacture. [19]                                  | 2.1 select the tools needed<br>for manufacture. [20]                                          | 3.1 collect evidence for<br>presenting the<br>manufacturing process. [21]                                                               |
| 1.2 use scale and<br>dimensions to associate<br>plans with manufacture.<br>[22]                                  | 2.2 prepare information to manufacture a product. [23]                                        | 3.2 present strengths and<br>weaknesses in the<br>manufacturing process. [24]                                                           |
| <u>1.3 prepare and document</u><br>files to support the process<br>of moving from design to<br>manufacture. [25] | 2.3 use manufacturing<br>tools with appropriate<br>precision and attention to<br>safety. [26] | 3.3 use appropriate digital<br>and/or physical drawings or<br>models to support a<br>presentation of the<br>manufacturing process. [27] |
| <u>1.4 make adjustments to a</u><br>design as a result of<br>feedback from the<br>manufacturing process. [28]    | 2.4 fabricate a product<br>using appropriate materials<br>and settings. [29]                  | 3.4 receive feedback from presenting the manufacturing process. [30]                                                                    |
|                                                                                                                  | 2.5 finish or assemble<br>parts and components. [31]                                          | 3.5 act on feedback to improve work. [32]                                                                                               |
|                                                                                                                  | 2.6 identify and correct<br>errors to make<br>improvements to work. [33]                      |                                                                                                                                         |

### Level 1, Unit 3 - Smart electronics (5 credits)

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert**Bage**(a,fn) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview');

## 1. understand analogue circuits.

<u>1.1 identify circuit</u> <u>components and symbols.</u> [35]

1.2 identify valid circuits.
[38]

<u>1.3 set up a physical</u> analogue circuit for a purpose. [41]

<u>1.4 distinguish between</u> <u>analogue and digital</u> <u>products.</u> [44]

## 2. understand digital control.

2.1 identify digital circuit components. [36]

2.2 identify program elements that control physical components. [39]

2.3 debug a control program to get it working. [42]

2.4 use switches to control actions. [45]

### 3. combine analogue and digital systems.

<u>3.1 identify a trigger point</u> in a changing voltage. [37]

<u>3.2 follow instructions to</u> build a Smart system. [40]

<u>3.3 use a program to</u> <u>control a physical system.</u> [43]

<u>3.4 combine Smart</u> <u>technology in a design to</u> <u>improve the user</u> <u>experience.</u> [46]

#### Level 2

# Level 2, Unit 1 - Product design and visualisation (5 credits)

| 1. relate<br>opportunities and<br>constraints to a<br>product design.              | 2. visualise product solutions to meet identified needs.                       | 3. present<br>evaluations of<br>designs.                                                         |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <u>1.1 describe opportunities</u><br>for a product or solution.<br>[48]            | 2.1 explain key aspects in<br>a design brief. [49]                             | 3.1 organise evidence for presenting the design. [50]                                            |
| <u>1.2 describe constraints on</u><br>a product or solution. [51]                  | 2.2 gather information to develop a solution. [52]                             | 3.2 explain strengths and<br>weaknesses in a visual<br>prototype. [53]                           |
| <u>1.3 consider commercial</u><br>sustainability of a product<br>or solution. [54] | 2.3 design and test<br>sketches and models to<br>visualise a solution. [55]    | 3.3 use appropriate digital<br>and/or physical models to<br>support presenting a<br>design. [56] |
|                                                                                    | 2.4 use appropriate digital<br>and physical media to<br>design a product. [57] | <u>3.4 receive feedback from</u><br>presenting a design. [58]                                    |

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]|function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert**股的全动** })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview'); 2.5 prepare a visual prototype of the solution. [59] <u>3.5 act on feedback to</u> improve a design. [60]

#### Level 2, Unit 2 - Product manufacture (5 credits)

| 1. relate a product's<br>design to its<br>manufacture.                                                        | 2. use tools and<br>information to<br>support the<br>manufacturing<br>process.  | 3. present<br>evaluation of<br>manufacturing<br>processes.                                                                                 |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <u>1.1 check quality in a</u><br>design in preparation for<br>manufacture. [62]                               | 2.1 select the tools needed<br>for manufacture. [63]                            | 3.1 organise evidence for<br>presenting the<br>manufacturing process. [64]                                                                 |
| 1.2 work with scales and<br>dimensions when<br>associating plans with<br>manufacture. [65]                    | 2.2 prepare and plan<br>information for the<br>manufacturing a process.<br>[66] | 3.2 explain strengths and<br>weaknesses in the<br>manufacturing process<br>including economic and<br>environmental<br>considerations. [67] |
| 1.3 prepare and document<br>files to support the process<br>of moving from design to<br>manufacture. [68]     | 2.3 use manufacturing<br>tools with appropriate<br>precision and safety. [69]   | 3.3 use appropriate digital<br>and/or physical models to<br>support a presentation of<br>the manufacturing process.<br>[70]                |
| <u>1.4 make adjustments to a</u><br>design as a result of<br>feedback from the<br>manufacturing process. [71] | 2.4 fabricate a product<br>using appropriate materials<br>and settings. [72]    | 3.4 receive feedback from<br>presenting the<br>manufacturing process. [73]                                                                 |
|                                                                                                               | 2.5 finish or assemble<br>parts and components. [74]                            | 3.5 act on feedback to<br>improve my work. [75]                                                                                            |
|                                                                                                               | 2.6 explain how to correct<br>errors to make                                    |                                                                                                                                            |

### Level 2, Unit 3 - Smart electronics (5 credits)

1. understand

2. understand digital 3. combine analogue

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBagec4;afn7) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview');

improvements to work. [76]

| analogue circuits.                                                                  | control.                                                                 | and digital systems.                                                                   |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| <u>1.1 describe the purpose</u><br>of circuit components and<br>symbols. [78]       | 2.1 describe the purpose<br>of digital circuit<br>components. [79]       | 3.1 describe the process of analogue to digital conversion. [80]                       |
| 1.2 build valid circuits.<br>[81]                                                   | 2.2 create program<br>elements that control<br>physical components. [82] | <u>3.2 build a Smart system.</u><br>[83]                                               |
| <u>1.3 set up and debug a</u><br>physical analogue circuit for<br>a purpose. [84]   | 2.3 explain bugs in a<br>control program and get it<br>working. [85]     | <u>3.3 explain how to use a</u><br>program to control a<br>physical system. [86]       |
| <u>1.4 explain the difference</u><br>between analogue and<br>digital products. [87] | 2.4 use logic to control<br>actions. [88]                                | 3.4 combine Smart<br>technology in a design to<br>improve the user<br>experience. [89] |

Source URL: https://theingots.org/community/SMART\_qualification\_info\_units

#### Links

[1] http://www.blackcountryatelier.com/

[2] https://theingots.org/community/sites/default/files/uploads/user4107/Smart%20Product%20Desig n\_Spec\_L1\_L2\_Spec\_BCA\_TLM\_2019-v1.1.pdf

[3] https://register.ofqual.gov.uk/Detail/Index/34052?category=qualifications&query=TLM%20L evel%201%20Certificate%20In%20Smart%20Product%20Design%20and%20Manufacture

[4] https://register.ofqual.gov.uk/Detail/Index/34062?category=qualifications&query=TLM%20L evel%202%20Certificate%20In%20Smart%20Product%20Design%20and%20Manufacture

- [5] https://theingots.org/community/spl1u1x#1.1
- [6] https://theingots.org/community/spl1u1x#2.1
- [7] https://theingots.org/community/spl1u1x#3.1[8] https://theingots.org/community/spl1u1x#1.2
- [9] https://theingots.org/community/spl1u1x#1.2
- [10] https://theingots.org/community/spl1u1x#2.2
- [11] https://theingots.org/community/spl1u1x#1.3
- [12] https://theingots.org/community/spl1u1x#1.3
- [13] https://theingots.org/community/spl1u1x#3.3
- [14] https://theingots.org/community/spl1u1x#2.4
- [15] https://theingots.org/community/spl1u1x#3.4
- [16] https://theingots.org/community/spl1u1x#2.5
- [17] https://theingots.org/community/spl1u1x#3.5
- [18] https://theingots.org/community/spl1u1i
- [19] https://theingots.org/community/spl1u2x#1.1
- [20] https://theingots.org/community/spl1u2x#2.1
- [21] https://theingots.org/community/spl1u2x#3.1
- [22] https://theingots.org/community/spl1u2x#1.2
- [23] https://theingots.org/community/spl1u2x#2.2
- [24] https://theingots.org/community/spl1u2x#3.2[25] https://theingots.org/community/spl1u2x#1.3
- [26] https://theingots.org/community/spl1u2x#2.3

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]|function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert**Bage**g為fm] })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview');

#### **Smart Tech Qualifications and Information**

-->

[27] https://theingots.org/community/spl1u2x#3.3 [28] https://theingots.org/community/spl1u2x#1.4 [29] https://theingots.org/community/spl1u2x#2.4 [30] https://theingots.org/community/spl1u2x#3.4 [31] https://theingots.org/community/spl1u2x#2.5 [32] https://theingots.org/community/spl1u2x#3.5 [33] https://theingots.org/community/spl1u2x#2.6 [34] https://theingots.org/community/spl1u2i [35] https://theingots.org/community/spl1u3x#1.1 [36] https://theingots.org/community/spl1u3x#2.1 [37] https://theingots.org/community/spl1u3x#3.1 [38] https://theingots.org/community/spl1u3x#1.2 [39] https://theingots.org/community/spl1u3x#2.2 [40] https://theingots.org/community/spl1u3x#3.2 [41] https://theingots.org/community/spl1u3x#1.3 [42] https://theingots.org/community/spl1u3x#2.3 [43] https://theingots.org/community/spl1u3x#3.3 [44] https://theingots.org/community/spl1u3x#1.4 [45] https://theingots.org/community/spl1u3x#2.4 [46] https://theingots.org/community/spl1u3x#3.4 [47] https://theingots.org/community/spl1u3i [48] https://theingots.org/community/spl2u1x#1.1 [49] https://theingots.org/community/spl2u1x#2.1 [50] https://theingots.org/community/spl2u1x#3.1 [51] https://theingots.org/community/spl2u1x#1.2 [52] https://theingots.org/community/spl2u1x#2.2 [53] https://theingots.org/community/spl2u1x#3.2 [54] https://theingots.org/community/spl2u1x#1.3 [55] https://theingots.org/community/spl2u1x#2.3 [56] https://theingots.org/community/spl2u1x#3.3 [57] https://theingots.org/community/spl2u1x#2.4 [58] https://theingots.org/community/spl2u1x#3.4 [59] https://theingots.org/community/spl2u1x#2.5 [60] https://theingots.org/community/spl2u1x#3.5 [61] https://theingots.org/community/spl2u1i [62] https://theingots.org/community/spl2u2x#1.1 [63] https://theingots.org/community/spl2u2x#2.1 [64] https://theingots.org/community/spl2u2x#3.1 [65] https://theingots.org/community/spl2u2x#1.2 [66] https://theingots.org/community/spl2u2x#2.2 [67] https://theingots.org/community/spl2u2x#3.2 [68] https://theingots.org/community/spl2u2x#1.3 [69] https://theingots.org/community/spl2u2x#2.3 [70] https://theingots.org/community/spl2u2x#3.3 [71] https://theingots.org/community/spl2u2x#1.4 [72] https://theingots.org/community/spl2u2x#2.4 [73] https://theingots.org/community/spl2u2x#3.4 [74] https://theingots.org/community/spl2u2x#2.5 [75] https://theingots.org/community/spl2u2x#3.5 [76] https://theingots.org/community/spl2u2x#2.6 [77] https://theingots.org/community/spl2u2i [78] https://theingots.org/community/spl2u3x#1.1 [79] https://theingots.org/community/spl2u3x#2.1 [80] https://theingots.org/community/spl2u3x#3.1 [81] https://theingots.org/community/spl2u3x#1.2 [82] https://theingots.org/community/spl2u3x#2.2 [83] https://theingots.org/community/spl2u3x#3.2 [84] https://theingots.org/community/spl2u3x#1.3 [85] https://theingots.org/community/spl2u3x#2.3

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert**股資**便便得加加 })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview');

- -->
- [86] https://theingots.org/community/spl2u3x#3.3
- [87] https://theingots.org/community/spl2u3x#1.4
- [88] https://theingots.org/community/spl2u3x#2.4
- [89] https://theingots.org/community/spl2u3x#3.4
- [90] https://theingots.org/community/spl2u3i

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1\*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert**Bage**(a所) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46896377-2', 'auto'); ga('send', 'pageview');